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A deviation from the Newtonian inverse square law can arise from torsion 
coupling. 

Recent reanalysis of the E6tvos experiment (Fischbach et al., 1986) 
has suggested that there might be a deviation from the Newtonian inverse 
square law of the form 

V( r) = - G a (  mlm2/  r)[1 + a e x p ( - r / A ) ]  (1) 

and systematic deviations in the E6tvos experiment suggest that a is negative 
(i.e., a repulsive component  is present) and has a value ~ --- - 7  • 10 -3 with 
A ~ 200 m. 

Thus, it has been suggested that there might be a Yukawa-type 
modification to the inverse square law, at a distance of a few hundred 
meters. It is interesting that independent geophysical measurements carried 
out in deep mines over a period of some years also suggest (Stacey et aL, 
1987; Thieberger, 1987) a possible modification of the Newtonian law to 
the form given by equation (1), with very similar values for the parameters 
a and A. 

It is also thought that the additional non-Newtonian component might 
couple to hypercharge or isospin, i.e., show a composition dependence, and 
several experiments have been planned to detect this (Stacey et ai., 1987; 
Boynton et al., 1987; Stubbs et al., 1987). Thus, the possibility of  a Yukawa- 
type correction to Newtonian gravity has aroused considerable interest. It 
must be remarked that there are several theoretical frameworks which can 
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give rise to and indeed require such modifications. For instance, supergravity 
theories require, in addition to spin-2 gravitons, adjacent spin partners, i.e., 
the gravitino and the graviphoton ~" and graviscalar o-. The ff and or can 
receive small masses from radiative corrections, the Higgs mechanism, for 
instance, giving rise to the vector particle of my ~ gv(~bM), where gv = x m , g  
(X = x/327rG) and mH - (~b~/) - (~bM) -- 1 TeV, the mass of the Higgs boson, 
so that mv -~ 10 -s eV, A = 10 m. Similarly for o-. 

The ~" can give rise to a repulsive force of  the type mm'gg'r  -~ e x p ( - m c )  
and or to an attractive force of mm'A2r -~ e x p ( - m , r ) .  So one has fifth and 
sixth forces ! 

In the N - 8 supergravity theory, both ~ and cr are present, while N = 2 
supergravity has only ff (no sixth force !). The vector coupling gives a factor 
depending on the quark composition, i.e., on the neutron-proton ratio of 
the material. 

Again the model of  Fujii (1972) requires a dilation and this has a finite 
range given by the product  of the Regge slope and the gravitational constant, 
i.e., of a few kilometers. 

Moreover, gravitational Lagrangians which involve terms quadratic in 
the curvature, in addition to the usual Hilbert term, which is linear in the 
curvature, give rise to field equations whose solutions for the field of  a point 
mass involve Yukawa terms (Stelle, 1977) along with the normal 1/r  
potential. That is, for a Lagrangian of the type 

f (o13x-2R 2 ~ OllR +a2R,~R  ) d4x 

the corresponding linearized field equations have, for a point mass source, 
the solution 

= - A / r +  ( B / r )  exp ( -Al / r )  - ( C / r )  exp(-A2/r )  (2) 

where 

A = x2M/877"ol3, B = x2M/6"lrce3, C = xZM/42z;a3 

A, = ~/2(~2x2)-1/2, ;~2 = ~ / 2 1 2 ( 3 ~ 1  - ~)x~]  -1/~ 

The necessity for such terms arises from quantum gravitational effects as 
well as arguments based on scale invariance and the renormalizability of 
gravitational interactions. 

A similar situation holds in the case of theories which involve terms 
quadratic on torsion and curvature in addition to the usual action of  the 
Einstein-Cartan theory (Hehl et al., 1980). It seems natural to introduce 
gravitational Lagrangians quadratic in torsion Q and curvature R because 
such squared terms arise in supergravity models and appear in the zero-slope 
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limit of string theories (Candelas et al., 1985). In such a case the torsion 
becomes a propagating field (Hehl et al., 1980), and in the weak static limit 
one finds an effective potential with a linearly rising part, i.e., a "confinement 
potential" of the type ~ r .  That is, for a Lagrangian like 

LG ~ (1/4)(det  eik ) - l [  R ~kiRijkl + QijkQiJk ] (3) 

(with the potential corresponding to the local affine connection A ,  ~ and 
tetrad eik),  the field equations are 

gOk';,- (1/2)Qke~g Uel- (1/2)Q'e~R Uke = (IQ) kU (4) 

Note the curvature-torsion coupling in the field equation (4). 
When linearized, the equations are of  the fourth order, i.e., of  the form 

V4qb = xm63(r), with a solution qb = const �9 r. However, the weak-field limit 
is no longer valid for such large values of r and one must go to the so-called 
"translational gauge limit" characterized by vanishing curvature and non- 
vanishing torsion which propagates. On the other hand, field equations 
following from actions involving linear terms in the curvature and torsion 
in addition to quadratic terms contain, in the linearized static case, mixed 
terms of  second and fourth order, i.e., aV4d9 + flvEqb = xmSa(r), which have 
solutions involving a 1/r  and Yukawa terms. 

Now in terms of  the tetrad frame e a =  e, a dx ~ and the connection 
A ab = A ~  ab d x  "~, the torsion Qa and curvature R ab can be defined as 

Q~ = d V  a --1- A ab A e b 
(5) 

R ab = dA ~b + A~c A A ~b 

We can take a general action with both linear and quadratic terms of the 
type with local Lorentz invariance: 

f (1/4k)[ao Rab eab+alQ ~ Q ~ + o t g Q a  A e  b A * ( Q b  ^ Va) A* A* 

+aaQ~ A V~ ^* (QbA Vb)]+f  a4R ~b A*R,b  (6) 

0r Otl, O~2, a3 ,  and ~lf 4 are suitable constants. 
Field equations are obtained by independent variation of  the action 

with respect to e a and A ab, and in the weak-field limit, putting as usual 

e ~ , = 8 ~ , + ( 1 / 2 ) h " ~ ;  [ha~[<< 1, ]VxA"~.[<< 1 (7) 

neglecting terms of order h 2, A 2, etc. The metric tensor is given by 

g~,, = eaaeb~,'r}ab = rig ~, -b h(~,,) ; h~,, ---- h~a'lTabS~, b (8) 
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Following Hehl et al. (1980), we calculate the effective potential in the static 
case (by taking the trace of  the field equations from the e variation; see 
also Kim and Yoom (1987). 

For 01o = 1 and other terms zero, equation (6) just becomes the Einstein- 
Cartan Lagrangian, and we have V2q~ = (1/2)Xp, the usual Poisson equation; 
for 01o = 0, we have only quadratic terms, giving rise to a confining potential. 
In the general case the solution is 

c~ = - G a ( m / r ) [ 1  + a e x p ( - r /  h )] (9) 

where 

01 = [(2010 - 011 - 2~176 -I- 2012)][(oe0q- 01, - -  2012)/(--01o -t- a 1 - -  2012) ] (10) 

with a similar expression for h. 
However,  it has been observed (Rauch, 1982a, b; Rauch et aL, 1982) 

that the gravitational theory with the Lagrangian . , / - g ( - A R + T R  2) is 
equivalent to the Einstein-Cartan theory in the presence of a traceless 
energy-momentum tensor and an arbitrary spin-angular-momentum tensor. 
Rauch (1982a) showed that fluctuations in the scalar curvature can act as 
a source of  torsion due to the presence of  terms of the form dR; even in 
the absence of pin, torsion need not vanish. In this sense, torsion is 
self-generated by the geometry, i.e., by matter-induced fluctuations in the 
geometry. This is a distinctive feature of  R + R 2 theories in general (Rauch, 
1981; Rauch, 1982a, b; Rauch et al., 1982). But we know that a theory with 
both R and R 2 terms has as solution a Newtonian potential plus a Yukawa 
term. Sosuch  potentials can arise in a pure Einstein-Caftan theory. In both 
cases (propagating and nonpropagat ing torsion) we have a solution of  the 
form of equation (9). In fact, it was shown (de Sabbata et al., 1989) that 
in a gauge theory of the local Lorentz group (giving torsion), the gauge- 
covariant Dirac equation gets additional terms in the Lagrangian of the form 

- (1 /2 )a ,a ,a~aV. - (3 /16)ggsy%,sq ,  a ,  - ( 3 / 1 6 ) g i ( a " a , . )  2 (11) 

The first term is the kinetic term for the axial vector field, the third a kind 
of  mass term (the second is an interaction term). So if we consider the first 
and third terms, this is the equation for a massive vector field. In the 
nonrelativistic limit, such terms were shown to give rise to a interaction 
between particles with spin (or isospin) which have a g2/r  behavior. With 
the third term in (11) being considered a mass term, this would have a 
e - a / ' / r  behavior. 

We can get some limit on the mass rn of  the particles (bosons) associated 
with this field from cosmological considerations. Their density should not 
dominate cosmological dynamics. The exclusion principle would then limit 
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their background density to (also from phase space considerations, i.e., they 
cannot be distributed such that the mutual separation is smaller than h /mc) :  

Pb ~" m4c3 /h3  (12) 

(Pb is the background density). Equkting Pb <--Pcrit ~'~" 3H2/8r (where Porit 
is the critical density and H the Hubble constant), this would constrain 
m --< 10 -9  e V ,  giving a range of h ~ 104 cm i.e., 102 m. 

As regards the coupling constant aG, if we associate torsion with this 
extra component ,  it appears  that one can give some evaluation of a. In fact, 
the effect of  torsion of a spinning body is to give rise to a sort of  magnetic 
type of field of  the form (de Sabbata, 1988) 

B = (aG)l/2~ (13) 

where ~r is the spin density and a is the fine structure constant. So this acts 
as an additional source of the gravitational field, i.e., as a density B 2 - ago  "2 
with a coupling of haG, where h = +1. As vector fields with like charges 
between particles (or between antiparticles) are repulsive, so for particles 
with isospin of  the same sign the force would be repulsive (h = -1 ) ,  and 
we can say that between particles of  opposite isospin (i.e., particles and 
antiparticles) it is attractive (h = +1). I f  the torsion is propagating, we would 
also get a Yukawa type of potential as seen from equation (9). So the final 
form will be of  Yukawa type with a coupling of aG, where in that case a 
is the fine structure constant 1/137 ~ 7 x 10 -3 .  So far the value of  the coupling 
constant a of  the additional term has no theoretical justification. The basis 
for this value a ~ - 7  x 10 -3  is just from experiments (i.e., reanalysis of  the 
E/Stvos experiment,  deep mine measurements,  etc.), but we notice the curious 
coincidence that it may be related to the fine structure constant a = 1/137 
7•  10 -3.  

Thus, such forces coupling to isospin ( Isham et al., 1973) can arise in 
local gauge theories with torsion. For bodies with polarized or aligned spins, 
this would give rise to a torsion energy term of the form S.  (4r 2) Y.; ~i, 
where Y~i ~i = (h /2 )  ~ ni = spin density of  aligned spins. A polarized macro- 
scopic body should have such an additional energy term. This can induce 
a torque and may be detectable in a Peres-type experiment (Peres, 1978). 

In summary,  it may not be necessary to invoke an additional repulsive 
force if future experiments confirm the need to modify the Newtonian 
potential. So it turns out that the consequences of  torsion for space-time 
seem to lead to a Yukawa type of additional contribution to the Newtonian 
potential and this resembles the potential postulated for the fifth force; in 
the case of  rotating bodies, we have some understanding for the coupling 
strength a to be approximately  - 7  x 10 -3  (between matter and matter). 
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